Group Dagdas

Bridging the gap between selective autophagy and endoplasmic reticulum homeostasis

Group Leader

Yasin Dagdas

Yasin Dagdas is a Group Leader at the Gregor Mendel Institute since 2017. Prior to that, he was a postdoc at The Sainsbury Laboratory, UK. He did his PhD at University of Exeter, UK.

Projects within consortium

The endoplasmic reticulum (ER) mediates folding and maturation of ~40% of the cellular proteome. Eukaryotes have evolved sophisticated quality control mechanisms to ensure proteostasis in the ER. One of these pathways that mediate removal of certain domains of the ER via autophagy is called ER-phagy. In this project, we will try to understand how ER-phagy cross-talks with the other ER quality control pathways.

Disruption of Endoplasmic reticulum homeostasis leads to the activation of a highly conserved homeostatic mechanism, termed the Unfolded Protein Response (UPR). UPR involves increasing the protein folding capacity of the ER, as well as degrading terminally misfolded proteins. Degradation of misfolded proteins are carried out by two pathways: (i) ER-associated degradation (ERAD) pathway, which involves translocation of unfolded proteins from ER to cytosol, and degradation at the proteasome; (ii) selective autophagy – aka ER-phagy – that mediates degradation of a part of the ER, which presumably contains unfolded proteins. How and when the cell decides to channel unfolded proteins to one of these degradation pathways are currently unknown.

Recently, we identified a connection between autophagy and UPR in plants. During the course of this SFB project, in collaboration with Beli, Clausen, Karagoz, Kohler and Martens labs, we would like to (i) biophysically and structurally characterize the protein complexes that connect UPR to autophagy (ii) explore how the cell decides to employ selective autophagy or the ERAD pathway, and (iii) perform in vitro and in vivo reconstitution experiments to mechanistically understand the pathway in detail. By the completion of this project, we aim to develop a comprehensive understanding of the cross-talk between selective autophagy and ER quality control pathways, which could allow us to develop translational means to enhance ER stress tolerance and productivity.

Project members

  • PhD student

    Alibek Abdrakhmanov

    SFB Member

  • PhD student

    Victor Sanchez de Medina

    SFB Member

  • PhD student

    Lorenzo Picchianti

    Associated

  • PhD student

    Madlen Stephani

    Associated

Targeted Protein Degradation related publications by Group Dagdas

  • 2020 A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress eLife Stephani M, Picchianti L, Gajic A, Beveridge R, Skarwan R, Sanchez de Medina Hernandez V, Mohseni A, Clavel M, Zeng Y, Naumann C, Matuszkiewicz M, Turco E, Loefke C, Li B, Durnberger G, Schutzbier M, Chen HT, Abdrakhmanov A, Savova A, Chia KS, Djamei A, Schaffner I, Abel S, Jiang L, Mechtler K, Ikeda F, Martens S, Clausen T, Dagdas Y Go to publication →
  • 2020 The Irish potato famine pathogen subverts host vesicle trafficking to channel starvation-induced autophagy to the pathogen interface bioRxiv Pandey P, Leary AY, Tümtas Y, Savage Z, Dagvadorj B, Tan E, Khandare V, Duggan C, Yusunov T, Madalinski M, Mirkin FG, Schornack S, Dagdas Y, Kamoun S, Bozkurt TO Go to publication →
  • 2020 EXO70D isoforms mediate selective autophagic degradation of Type-A ARR proteins to regulate cytokinin sensitivity bioRxiv Acheampong AK, Shanks C, Chang CY, Schaller E, Dagdas Y, Kieber JJ Go to publication →
  • 2020 Autophagy mediates temporary reprogramming and dedifferentiation in plant somatic cells EMBO J. Rodriguez E, Chevalier J, Olsen J, Ansbøl J, Kapousidou V, Zuo Z, Svenning S, Loefke C, Koemeda S, Drozdowskyj PS, Jez J, Durnberger G, Kuenzl F, Schutzbier M, Mechtler K, Ebstrup EN, Lolle S, Dagdas Y*, Petersen M* Go to publication →
  • 2019 N-terminal β-strand underpins biochemical specialization of an ATG8 isoform PLoS Biol. Zess EK, Jensen C, Cruz-Mireles N, De la Concepcion JC, Sklenar J, Stephani M, Imre R, Roitinger E, Hughes R, Belhaj K, Mechtler K, Menke FLH, Bozkurt T, Banfield MJ, Kamoun S, Maqbool A, Dagdas YF Go to publication →
  • 2018 Host autophagy machinery is diverted to the pathogen interface to mediate focal defense responses against the Irish potato famine pathogen eLife Dagdas YF*, Pandey P*, Tumtas Y, Sanguankiattichai N, Belhaj K, Duggan C, Leary AY, Segretin ME, Contreras MP, Savage Z, Khandare VS, Kamoun S, Bozkurt TO Go to publication →
  • 2016 Structural Basis of Host Autophagy-related Protein 8 (ATG8) Binding by the Irish Potato Famine Pathogen Effector Protein PexRD54 J. Biol. Chem. Maqbool A, Hughes RK, Dagdas YF, Tregidgo N, Zess E, Belhaj K, Round A, Bozkurt TO, Kamoun S, Banfield MJ Go to publication →
  • 2016 An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor eLife Dagdas YF*, Belhaj K*, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, Tabassum N, Cruz-Mireles N, Hughes RK, Sklenar J, Win J, Menke F, Findlay K, Banfield MJ, Kamoun S, Bozkurt TO Go to publication →